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Abstract—Community evolution remains a heavily researched
and challenging area in the analysis of dynamic complex network
structures. Currently, the primary limitation of traditional event-
based approaches for community evolution analysis is the lack
of strict constraint conditions for distinguishing evolutionary
events, which entails that as the cardinality of discovered events
increases, so does the number of redundant events. Another lim-
itation of existing approaches is the lack of consideration for
weak events. Weak events can be generated by small changes in
communities, which are empirically prevalent, and are typically
not captured by traditional events. To manage these two afore-
mentioned limitations, this research aims to formalize a weak
and strong events-based framework, which includes the following
newly discovered events: “weak shrink,” “weak expand,” “weak
merge,” and “weak splity” predicated on the community over-
lapping degree and community degree membership, this article
refines these traditional strong events, as well as new constraints
for weak events. In addition, a community evolution mining
framework, which is based on both strong and weak events, is
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proposed and denoted by a weak-event-based community evolu-
tion method (WECEM). The framework can be summarized by
the following: 1) communities in complex networks with adjacent
time-stamps are compared to determine the community overlap-
ping degree and community membership degree; 2) the values of
the community overlapping degree and membership degree meet
the definition of events; and 3) weak events are effectively iden-
tified. Extensive experimental results, on real and synthetic data
sets consisting of dynamic complex networks and online social
networks, demonstrate that WECEM is able to identify weak
events more effectively than traditional frameworks. Specifically,
WECEM outperforms traditional frameworks by 22.9% in the
number of discovered strong events. The detection accuracy of
evolutionary events is approximately 12.2% higher than that
of traditional event-based frameworks. It is also worth noting
that, as the cardinality of the data grows, the proposed frame-
work, when compared with traditional frameworks, can more
effectively, and efficiently, mine large-scale complex networks.

Index Terms—Community detection, community evolution
analysis, complex networks, event-based framework, weak events.

I. INTRODUCTION

COMPLEX networks are distinct from simple networks,
such as lattices or random graphs, such that they have

nontrivial topological features. These complex networks are
ubiquitous in our everyday lives, and examples include online
social networks, such as Facebook and Twitter. Community
structures are generally inherent in complex networks, and
can be best exemplified by groups of nodes in which the
network connections are dense, but between which connec-
tions are sparser [1]. Community structures, representing a
mesoscale structure of networks, accordingly, are viewed as
one of the most important characteristics of complex networks.
Such structures provide immense social and economic value
in understanding the processes of network formation, growth
and shrinkage, information dissemination and public opinion
analysis. Dynamic analysis of complex networks, especially
assessing the evolution of communities, can provide insights
into: 1) detecting a drastic change in the interaction patterns;
2) understanding the latent structures of complex networks;
and 3) forecasting the future trends of networks [2], [3].

Motivation: In real-world applications, community struc-
tures represent a dynamically changing phenomenon.
Accordingly, communities are in constant flux: growing,
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shrinking, emerging, and disappearing all together. Examples
include human migration in social networks, seasonal animal
migrations, and topic transfers in blogs. Due to the cardinality
of nodes in dynamic complex networks, static community
discovery approaches cannot be effectively applied to analyze
this evolution of communities. Thus, it follows that research
in this area remains fundamentally important in precision
marketing, crime prevention, traffic flow forecasting, and
network congestion prediction. The following example
illustrates the importance of research in community evolution.

Example 1: Sina microblog is the largest blogging system
in China. The distribution of the userbase is in constant flux,
with users joining and leaving on a regular basis. This dynamic
is indicative of a constantly changing network structure. In
addition, the userbase represents a multitude of interests on
a vast array of topics, which in itself contributes to the ever-
changing structure. Mining communities with such a userbase
can provide insight and understanding into how the networks
change, and identify users’ points of interests. This knowl-
edge can then be applied to social networking platforms to
recommend services across various communities.

Challenges: Current research relevant to mining complex
and dynamic networks has focused on event-based frame-
works, and variants, as proposed by Asur et al. [4]. However,
the existing methods have the following disadvantages.

1) Defining an evolutionary event is not straight forward.
Given the scenario in which a constraint condition is
loosely defined, the potential for events to grow quickly
increases, leading to a large number of redundant events.

2) Traditional event-based frameworks work ideally given
a single type of event in one community over a given
period of time. However, in practice, multiple events
often occur within a community simultaneously. In addi-
tion, traditional methods are poorly equipped to deal
with weak events, which can be defined as events trig-
gered by small changes in the community. These events
are not considered evolutionary due to the strict con-
straints of strong events. Finally, traditional methods
generally return low accuracy in evolutionary event
discovery.

3) The high time complexity of traditional event-based
frameworks makes it difficult to efficiently implement
discovery in large-scale dynamic complex networks.

Contributions: In an effort to improve the efficiency and
accuracy of traditional event-based frameworks for discovering
community evolution, this article focuses on the detection of
various types of events occurring in the same communities, as
well as the discovery of comparatively higher quality strong
events. In this article, a new method for community evolution
analysis in mining dynamic networks is proposed, which is
based on newly discovered weak events. The contributions of
this article are given as follows.

New Concept: We introduce a new concept of weak
event based on the community overlapping degree and
membership degree. According to this concept, we refine
the events of community evolution, and then improve
the traditional event-based framework for community
evolution.

New Framework: Evolutionary events are categorized into
strong and weak events, and the application scenarios of weak
events are introduced. Weak events are formally defined, as
well as a method for determining such events. In addition, a
weak event-based mining framework is proposed, referred as
WECEM.

Extensive Experimental Results: Extensive experiments are
conducted in real and synthetic large-scale dynamic networks.
We compare the proposed WECEM framework with state-of-
the-art community evolution discovery methods to verify the
quality, mining accuracy, and runtime performance.

II. RELATED WORK

In recent years, due to the popularity and ubiquity of online
social networks and large-scale complex networks, community
discovery, and evolutionary event mining have attracted a lot of
attention [5]–[8]. Most specifically, dynamic networks operate
as a powerful signal for forecasting the behavior of individu-
als, route planning, personalized recommendations, and so on.
Within this field, community detection remains fundamental
in community evolution analysis. Existing research has done
much to progress the field of study, as noted in the following
examples. The modularity-based approach [1], [9] widely used
for discovering communities in complex networks, and several
improved algorithms [10] have been proposed successively,
e.g., Fast-Newman [9], and the Clauset, Newman, and Moore’s
algorithm (CNM) [11]. Recently, Hao et al. [12] proposed a
technique which integrates formal concept analysis with the
clique percolation method, and works to improve the accu-
racy of community discovery. Mahmood et al. [13] combined
complex networks and spatial data mining techniques by map-
ping network nodes into a geometric space and encoding the
position of each node with its geodesic distances from all the
other nodes. Palla et al. [14] proposed a clique percolation
method that effectively identifies overlapping communities in
complex networks. Parsa et al. [15] presented a new method
for detecting communities based on an estimation of distribu-
tion algorithm. Bouguessa et al. [16] aggregated similar nodes
to form small communities, then iteratively combined these
small communities until a maximum modularity is reached.
Lyzinski et al. [17] obtained a low-dimensional representation
by mapping networks to an Euclidean space.

Recent research has been focused on predicting the trend
of network development. The most common approach is the
event-based framework proposed by Ausr et al. [4]. It first
detects communities over time, and then mines evolutionary
events by comparing overlapping and membership degrees of
communities relative to time. Takaffoli et al. [2], [18] for-
mally defined a series of events for community evolution, and
proposed a community matching algorithm to identify similar
communities. In addition, the concept of “meta-community”
was proposed, which entails a series of similar commu-
nities with different timestamps. İlhan and Öguducu [19]
used the autoregressive integrated moving average model
to predict how particular community features change on
the next time horizon. Zhu et al. [20] proposed a multi-
mode co-clustering approach to detect the hierarchical and
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overlapping communities in location-based social networks.
Tajeuna et al. [21] formulated the number of nodes shared
between two communities as a matrix. This approach could
efficiently track the changes of communities during evolution.
Falkowski et al. [22] proposed an incremental graph min-
ing algorithm based on the idea of static density clustering,
which partitions evolutionary events into positive and nega-
tive changes. The method can discover detailed information
about evolutionary events. Wang et al. [23] proposed a new
method to calculate the importance of core nodes based on
the degrees of nodes. The changes are then compared to core
nodes over adjacent timestamps to determine the evolution
of the given networks. This method uncovered two important
phenomenon: growing and metabolic processes in networks.
Zhang et al. [24] studied the evolutionary game dynamics of
multiple community networks. Liu et al. [25] proposed a fast
community evolution tracking model, which uses an improved
PageRank algorithm to find the core nodes in a network. As
a result, the evolutionary events can be detected by adding
nodes and edges into core communities over time.

The disadvantages of the aforementioned community evo-
lution analysis methods over event-based frameworks can be
summarized as follows.

1) These methods maintain a strict definition for strong
events, which greatly limits the scope. This leads to
events, which may be equally important, not qualifying
under the given criteria. This is the motivation behind
the proposed weak events in this article. Existing work,
based on the event-based framework, does not take into
account the effects of overlapping events, and that of
weak events.

2) The computational complexity of the event-based frame-
work is extremely costly, most notably being the
Takaffoli framework, which requires the calculation of
the difference of each community at all timestamps.

In order to overcome the challenges associated with the tra-
ditional event-based frameworks, this article proposes a new
weak event-based community evolution analysis algorithm
based on strong and weak events. In this article, the algo-
rithm is referred to as WECEM. In discovery, WECEM takes
into consideration the overlapping and membership degrees of
communities, which allows events between overlapping com-
munities to be distinguished more effectively. Most notably,
this enables WECEM to perform without influencing the
identification accuracy.

The proposed dynamic community evolution analysis
framework can be applied in several applications, for
example, the identification of crucial genes in biological
network [26], [27], the design, synthesis, and re-engineering
of biological networks for biomedical purpose [28], and
networked medicine and biological network control [29].

III. COMMUNITY EVOLUTION ANALYSIS FRAMEWORK

BASED ON STRONG AND WEAK EVENTS

In large-scale complex dynamic networks, community struc-
tures evolve slowly once the relationships between nodes
in networks are formed. Consequently, it becomes difficult

Fig. 1. Example of strong events in community evolution.

to change community structures over a comparatively short
period of time. Thus, large overarching changes are infrequent,
however, this does not imply that small changes are not fre-
quently occurring during the periods between larger changes.
It follows then that if traditional methods are designed only to
detect broad, sweeping changes in complex networks, those
smaller, weak events are not being detected. This is the
motivation behind our proposed weak-event-based approach.

A. Preliminaries

Definition 1 (Dynamic Community): Let Ct =
(vt

1, vt
2, . . . , vt

n) be a community at time t, and v repre-
sents the node in Ct. From t to t + m, several events
may occur in Ct. {Ct,�A1,�A2, . . . ,�Am} represents a
dynamic community, denoted by Ct:t+m. The community
Ct+m = Ct +�A1 +�A2 +· · ·+�Am, in which �A1 ∼ �Am

are evolutionary events happening in Ct from time t to t + m.
With time passing by, the relationships between nodes in

the network have gradually changed, forming some new com-
munities with different evolutionary events. Here, we will first
give the definition of traditional evolutionary events, which is
called “strong event.”

Definition 2 (Strong Event): The nodes in the network inter-
act with each other, which causes the network structure to
change at the next timestamp, and this process is called a
strong event. Strong events include: Remain, Shrink, Expand,
Split, Merge, Form, and Disappear. The structures and fea-
tures of the network will change as strong events occur. An
illustrative example of strong event is shown in Fig. 1.

As shown in Fig. 1, this network has two communities,
C1

t and C2
t , at time t. At time t + 1, C2

t+1 splits into two
smaller communities as a result of the relationships change
between nodes 10, 11 and other nodes. Simultaneously, the
structure of C1

t+1 remains unchanged, so C1
t+1 is viewed to

remain as an event. At time t + 2, nodes 13 and 14 join this
network, and node 14 establishes a relationship with nodes
3, 4, and 6. At the same time node 13 establishes a relation-
ship with node 11. The cardinalities of community C1

t+1 and
C3

t+1 expand due to these changes. At time t + 3, community
C1

t+3 shrinks because node 1 exits from C1
t+3. At time t+4,

community C3
t+4 disappears completely since all of its nodes
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(a)

(b)

(c)

(d)

Fig. 2. Examples of weak events in community evolution. (a) Weak shrink.
(b) Weak expand. (c) Weak split. (d) Weak merge.

maintain no relationship with external communities. At time
t+5, the relationships between nodes 4, 5, 7, and 12 become
so strong that it causes C1

t+4 to merge with C2
t+4.

Remark 1: Due to the characteristics of nonrealtime evolv-
ing communities in complex networks, measurable change can
be a slow occurring process. There may also be multiple
evolutionary events occurring at the same time in similar
communities.

Definition 3 (Weak Event): A weak event is triggered by
small changes in the community. It is not detected by strong
events, yet occur together with strong events, including:
Weak Shrink, Weak Expand, Weak Split, and Weak Merge
events.

As shown in Fig. 2(a), community C2
t at time t splits and

forms communities C2
t+1 and C3

t+1, as seen at time t + 1.
Simultaneously, node 8 exists in C2

t , and disappears from the
network at time t+1. It can be observed then that a weak shrink
event occurs from t to t + 1 in C2

t . According to Fig. 2(b),
communities C1 and C2 aggregate at time t + 1, and node 15
joins as well. This leads to the occurrence of a weak expand-
ing event. According to Fig. 2(c), communities C2

t and C3
t , at

time t, belong to C2
t , and nodes 8 and 9 disappear at time t+1.

Thus, it can be deduced that a weak splitting event occurs at
time t + 1 in C2

t at time t. By Fig. 2(d), though communities
C1

t and C2
t at time t belong to C1, at time t + 1, nodes 15–17

join in this network, and belong to C1
t+1 at time t + 1. Thus, a

weak merging event occurs at t + 1 for communities C1
t and

TABLE I
DESCRIPTION OF IMPORTANT SYMBOLS

C2
t at t. The formal definition of these four weak events is

described in Section III-B2.
Definition 4 (Community Overlapping Degree): Given

community Cp
t at time t and community Cq

t+1 at time t + 1,
the community overlapping degree of these two communities
is defined as the proportion of the number of nodes in the
intersection of communities to the number of nodes in the
union of communities, as follows [30]:

O
(
Cp

t , Cq
t+1

) =
∣∣Cp

t
⋂

Cq
t+1

∣∣
∣∣Cp

t
⋃

Cq
t+1

∣∣ . (1)

Equation (1) is used to determine the persistence of rela-
tionships of nodes between communities at different time.

Definition 5 (Community Membership Degree): The com-
munity membership degree of community Cq

t+1 at time t + 1
and Cp

t at time t is equal to the proportion of the number
of nodes in the interaction of these two communities to the
number of nodes in Cp

t , which is defined as follows [30]:

S
(
Cp

t , Cq
t+1

) =
∣
∣Cp

t
⋂

Cq
t+1

∣
∣

∣∣Cp
t

∣∣ . (2)

Equation (2) implies that the degree of the community Cq
t+1

belongs to community Cp
t . The community membership degree

is used to determine whether a community belongs to another
one. Specifically, it can be used to discover evolutionary
events, such as splitting and merging events.

An event plays a fundamental role in community evolution
analysis. The following section provides a detailed description
of evolutionary events.

B. Definitions of Evolutionary Events

The nomenclature is provided in Table I.
1) Strong Events: According to the concepts given by

Asur et al. [4] and Takaffoli et al. [18], strong events are
defined as follows.

Definition 6 (Remain): Suppose there is a community Cq
t+1

at time t+1 and another community Cp
t at time t, and they are
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highly overlapped and share many similar nodes. This phe-
nomenon is called “Remain,” and can be formalized by the
following formula:

R
(
Cp

t , Cq
t+1

) = 1

iff.∃Cq
t+1 ∈ Ct+1, O

(
Cp

t , Cq
t+1

) ≥ θ (3)

where Ct+1 represents a dynamic network at time t + 1.
Definition 7 (Form): If the community overlapping degree

between community Cp
t and community Cq

t−1 at time t − 1 is
very low, that is, the community Cp

t at time t has no relation-
ship with other communities at time t−1, then a “Form” event
occurs. This event can be formalized as

F
(
Cq

t−1, Cp
t
) = 1

iff.∀Cq
t−1 ∈ Ct−1, O

(
Cp

t , Cq
t−1

)
< θ. (4)

Definition 8 (Disappear): If the community overlapping
degree between community Cp

t and community Cq
t+1 at t + 1

is very low, Cp
t at time t has no relationship with other com-

munities at time t+1, then a “Disappear” event occurs, which
can be modeled as

D
(
Cp

t , Cq
t+1

) = 1

iff.∀Cq
t+1 ∈ Ct+1, O

(
Cp

t , Cq
t+1

)
< θ. (5)

Definition 9 (Expand): If community Cp
t at time t belongs

to another community at t + 1, denoted by Cp
t ⊂ Cq

t+1, and
the number of nodes in Cp

t is less than that of Cq
t+1, we call

Cp
t “Expands” at time t + 1 by the following formula:

E
(
Cp

t , Cq
t+1

) = 1

iff.∃Cq
t+1 ∈ Ct+1, 1 − γ ≤ S

(
Cq

t+1, Cp
t
)

< 1. (6)

Definition 10 (Shrink): If community Cq
t+1 at time t + 1

belongs to community Cp
t at time t, and the number of nodes

in Cq
t+1 is less than that of Cp

t , then a “Shrink” event occurs
at time t + 1, which is described as follows:

SH
(
Cp

t , Cq
t+1

) = 1

iff.∃Cp
t ∈ Ct, 1 − γ ≤ S

(
Cp

t , Cq
t+1

)
< 1. (7)

Because γ ∈(0, 1], in order to detect Expand and Shrink
events effectively, the left-hand constraints of Expand and
Shrink events with respect to S are specified to 1-γ , rather
than γ . While the value of S only changes within a limited
range.

Definition 11 (Split): If there are k(>1) communities
X={Cq

t+1, . . . , Cq+k
t+1 } at time t + 1, and each community in

X almost belongs to community Cp
t , and the community over-

lapping degree between the union of communities in X and Cp
t

is very high, Cp
t is viewed to “split” into different communities

as follows:

SP
(
Cp

t , X
) = 1

iff

{
O

(
Cp

t , X
) ≥ ξ

S
(
Ci

t+1, Cp
t
) ≥ ξ ∀Ci

t+1 ∈ X.
(8)

Definition 12 (Merge): If there are many communities
Y={Cp

t , . . . , Cp+k
t } at time t, each community in Y almost

belongs to community Cq
t+1, and the community overlapping

degree between the union set of communities in Y and Cq
t+1 is

very high, then a “merge” event occurs, which is represented
by the following equation:

SP
(
Cq

t+1, Y
) = 1

iff

{
O(Y, Cq

t+1) ≥ ξ

S
(
Ci

t, Cq
t+1

) ≥ ξ ∀Ci
t ∈ Y.

(9)

In Definitions 6–12, the parameters of θ , γ , and ξ are tuned
by experiments in order to discover as many events as pos-
sible. Different from traditional event-based frameworks, the
WECEM framework uses these three parameters to control the
occurring conditions of each event.

Observation 1: Strong events can be classified into the
following types.

1) Form, Disappear, and Remain involve the existence
events of communities.

2) Shrink and Expand events are relevant to the change of
community sizes.

3) Split and Merge involve the change of multiple
communities.

For the aforementioned three kinds of evolutionary events,
if only one parameter as shown in the definition of each
event to control the evolution of communities, it is difficult to
accurately detect evolutionary events. Therefore, we use three
parameters θ , γ , and ξ as constraints for events.

Theorem 1: The size of the union of two communities is
larger than that of each community, that is

∣
∣Cp

t ∪ Cq
t+1

∣
∣ ≥ ∣

∣Cp
t

∣
∣ (10)

∣
∣Cp

t ∪ Cq
t+1

∣
∣ ≥ ∣

∣Cq
t+1

∣
∣. (11)

It is worth noting that (1) is used to determine the overlap-
ping degree of two communities between adjacent timestamps
and the persistent relationship between two communities.
By Theorem 1, it is unlikely, and most probably a byprod-
uct of randomness, when in real-world situations the union
set of two communities can be used to determine the overlap-
ping degree. Equation (1) takes into account the growth and
shrink of different communities over time.

2) Weak Events: It can be assumed that strong events may
be accompanied by weak events, which can lead to small
changes in communities. However, it can not be viewed to
constitute the change necessary to trigger traditional events as
observed by event-based frameworks. At the same time, there
exist some changes that do not satisfy the requirements of
strong events, despite there being measurable changes in the
network. This phenomenon is referred to as a “weak event,”
which can serve as a complement for strong events. A formal
definition is as follows.

Definition 13 (Weak Shrink): The phenomenon of a slight
or measurably small shrink of nodes in communities is called
a weak shrink event. This event occurs at the same time as a
strong event. Weak shrink events appear in the following three
scenarios.

1) When a Remain event occurs, community Cp
t at time t

belongs to community Cq
t+1 at time t+1, and the size of

the intersection of the two communities, at various time
intervals, is less than that of the communities at time t.
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2) When a Form event occurs, resulting from a community
at time t shrinking but not splitting, and event is not
observed even though a new community has formed at
time t + 1.

3) When a Split event occurs, the size of the intersection
of X, which represents the union of communities at time
t + 1 and community Cp

t at time t, is less than the size
of Cp

t at time t.
The above three cases can be formulated as follows:

WSH =

⎧
⎪⎪⎨

⎪⎪⎩

S
(
Cp

t , Cq
t+1

)
< 1,

(
Cp

t , Cq
t+1

) ∈ R

S
(
Cq

t+1, Cp
t
) ≥ θ,

{ (
Cp

t , Cq
t+1

) ∈ F(
Cp

t , Cq
t+1

)
/∈ SP

S
(
Cp

t , X
)

< 1,
(
Cp

t , X
) ∈ SP

(12)

Definition 14 (Weak Expand): A weak expanding event
occurs along side strong events, which indicates a slow
growth in communities. Weak expanding events appear in the
following three scenarios.

1) When a Remain event occurs, the size of the intersection
of two communities at time t is less than that of
communities at the next timestamp.

2) When a Form event occurs, since the community at time
t expands without the occurrence of a Merge event, a
new community nevertheless forms at time t + 1.

3) When a Merge event occurs, the size of the interaction
set of Y (which represents the union of communities at
time t) and community Cq

t+1 at time t + 1, is less than
the size of Cq

t+1 at time t + 1.
The above three cases can be modeled as follows:

WE =

⎧
⎪⎪⎨

⎪⎪⎩

S
(
Cq

t+1, Cp
t
)

< 1,
(
Cp

t , Cq
t+1

) ∈ R

S
(
Cp

t , Cq
t+1

) ≥ θ,

{ (
Cp

t , Cq
t+1

) ∈ B(
Cp

t , Cq
t+1

)
/∈ M

S
(
Y, Cq

t+1

)
< 1,

(
Y, Cq

t+1

) ∈ M.

(13)

Definition 15 (Weak Split): If a community at time t + 1
belongs to another community at time t, but the union of these
communities cannot represent the one at time t, then this phe-
nomenon is called a “weak split,” which can be described
further with the following formula:

WSP =
{∀Ci

t+1 ∈ X, S
(
Ci

t+1, Cp
t
) ≥ ξ

O
(
X, Cp

t
)

< ξ.
(14)

Definition 16 (Weak Merge): If some communities at time
t belong to one community at time t+1, but the union of these
communities cannot constitute the community at time t + 1,
this phenomenon is called “weak merge,” which is defined as
follows:

WM =
{∀Ci

t ∈ Y, S
(
Ci

t, Cq
t+1

) ≥ ξ

O
(
Cp

t , Y
)

< ξ.
(15)

In Definitions 6–16, the parameter θ is specified to the
same value, and γ and ξ as well. These three parameters are
determined empirically by experimentation.

Detailed descriptions of various events are given in Table II.
The complexity represents the cardinality of changing nodes in
two communities, when events are detected by the framework.
The absolute value in the last column represents the size of
the corresponding communities.

Fig. 3. Linked-list storage structure.

Remark 2: There is a difference between splitting and
merging events in terms of time sequences. For a splitting
event, we compare communities over different time sequen-
tially. Contrarily, for a merging event, we have to compare
communities in a reverse time sequence.

Weak events are the manifestations of small changes in com-
munities. Since these changes are not apparent, we cannot
detect them via traditional event-based frameworks. More gen-
erally, vast networks evolve slowly with myriad small changes,
which are difficult to detect, but nonetheless serve as the cat-
alyst for strong events. Therefore, a case can be made that
detecting weak events can be of equal, if not of greater impor-
tance, for successfully detecting changing trends in dynamic
networks. This can be paramount in helping service providers
predict future developments of communities.

Remark 3: When compared with strong events, weak events
occur more frequently, and the occurrences of a large number
of weak events are an indicator for an eventual strong event.

IV. COMMUNITY EVOLUTION DETECTION ALGORITHM

BASED ON WEAK EVENTS

WECEM includes the following steps: 1) detecting Remain,
Disappear, and their accompanying events, including Weak
Expand and Weak Shrink; 2) detecting Expand and Shrink
events; 3) detecting Split, Weak Split and Weak Shrink events;
4) detecting Form, Weak Shrink, and Weak Expand events; and
5) detecting Merge, Weak Merge and Weak Expand events.
Before discovering evolutionary events, duplicated edges are
eliminated and indices of nodes are reordered. In particular,
we use the linked-list storage structure as shown in Fig. 3.

We apply the above data structure because there are a huge
volume of network data generated at different time, it is dif-
ficult to use a very large matrix to store the big network
structure. Contrarily, linked lists with head nodes can help
greatly compress the storage space in order to reduce the cost
of determining whether an edge does exist.

A. Remain, Disappear, and Accompanying Event Detection

Algorithm 1 can be summarized as follows.
1) For each community at time t, if there is a commu-

nity at time t + 1 in which the community overlapping
degree with it is bigger than θ , a Remain event occurs
(lines 1–4).

2) If these two communities do not have complete mem-
bership relationship, Weak Shrink, and Weak Expand
events have occurred (lines 5–8).
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TABLE II
DESCRIPTION OF EVENTS

Algorithm 1 Remain, Disappear, Weak Expand, and Weak
Shrink Event Detection
Input: The community set Ct at t, and Ct+1 at t+1.
Output: R, WE, WSH, D.

1. for each ct ∈ Ct do
2. ct+1=find(Ct+1, O(ct, ct+1));
3. if ct+1 �= ∅ then
4. R=insert(ct);
5. if S(ct, ct+1)<1 then
6. WSH=insert(ct);
7. if S(ct+1, ct)<1 then
8. WE=insert(ct);
9. else

10. D=insert(ct);
11. output R, WE, WSH, D.

3) If there is no community at time t + 1 similar to a com-
munity at t, a Disappear event has occurred (lines 9
and 10).

4) Finally, it outputs identified events (line 11).

B. Expand and Shrink Event Detection

The main steps of Algorithm 2 include as follows.
1) It compares communities at time t with communities

at time t + 1, if the community membership degree of
communities at time t + 1 meets with the communities
at time t in (6), an Expand event occurs (lines 1–4).

2) If the community membership degree meets
with Equation (7), a Shrink event occurs (lines 5
and 6).

Algorithm 2 Expand and Shrink Event Detection
Input: The community set Ct at t, and Ct+1 at t+1.
Output: E, SH.

1. for each ct ∈ Ct do
2. for each ct+1 ∈ Ct+1 do
3. if 1-γ ≤ S(ct+1,ct)<1 then
4. E=insert(ct);
5. else if 1-γ ≤ S(ct,ct+1)<1 then
6. SH=insert(ct+1);
7. output E, SH.

Algorithm 3 Split and Its Accompanied Event Detection
Input: The community set Ct at t, and Ct+1 at t+1.
Output: SP, WSP, WSH.

1. for each ct ∈ Ct do
2. for each ct+1 ∈ Ct+1 do
3. if S(ct+1, ct)≥ ξ then
4. C′=C′ ∪ ct+1;
5. if O(ct, C′)≥ ξ then
6. SP=insert(ct);
7. if S(ct, C′)<1 then
8. WSH=insert(ct);
9. else

10. WSP=insert(ct);
11. output SP, WSP, WSH.

3) Finally, it outputs identified events (line 7).

C. Split and Accompanying Event Detection

Algorithm 3 includes the following important steps.
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Algorithm 4 Form and Its Accompanied Event Detection
Input: The community set Ct at t, and Ct+1 at t+1.
Output: F, WSH, WE.

1. for each ct+1 ∈ Ct+1 do
2. ct=find(ct, O(ct+1, ct)≥ θ )
3. if ct = ∅ then
4. F=insert(ct+1);
5. if S(ct+1, ct)≥ θ then
6. WSH=insert(ct);
7. if S(ct, ct+1)≥ θ then
8. WE=insert(ct);
9. output F, WSH, WE.

Algorithm 5 Merge and Its Accompanying Events Detection
Input: The community set Ct at t, and Ct+1 at t+1.
Output: M, WM, WE.

1. for each ct+1 ∈ Ct+1 do
2. for each ct ∈ Ct do
3. if S(ct, ct+1)≥ ξ then
4. C′=C′ ∪ ct;
5. if O(ct+1, C′)≥ ξ then
6. M=insert(ct+1);
7. if S(C′, ct+1)<1 then
8. WE=insert(ct+1);
9. else

10. WM=insert(ct+1);
11. output M, WM, WE.

1) It compare communities at time t with all communities
at time t+1, if a community at time t+1 belongs to the
community at time t, stores this community (lines 1–4).

2) If the community overlapping degree between the union
set of these communities and the community at time t
satisfies the condition of Split, a Split event occurs (lines
5 and 6). If the community membership degree between
the union of these communities and the community at
time t is very small, a Weak Shrink event occurs (lines
7 and 8).

3) Otherwise, Weak Split occurs (lines 9 and 10).
4) Finally, it outputs identified events (line 11).

D. Form and Accompanying Event Detection

The main steps of Algorithm 4 include as follows.
1) For each community at time t+1, if there is no commu-

nity at time t satisfying the forming condition, a Form
event occurs (lines 1–4).

2) When a Form event occurs, if the community member-
ship degree of ct+1 to ct is bigger than θ , a Weak Shrink
event occurs (lines 5 and 6). If the community member-
ship degree of ct to ct+1 is bigger than θ , a Weak Expand
event occurs (lines 7 and 8).

3) Finally, it outputs identified events (line 9).

E. Merge and Accompanying Events Detection

The main steps of Algorithm 5 are as follows.

1) It compares a community at time t+1 with all communi-
ties at t. If multiple communities at time t belong to the
community at t+1, store these communities (lines 1–4).
If the community overlapping degree between the union
of these communities at time t and the community at t+1
satisfies the merging condition, a Merge event occurs
(lines 5 and 6); otherwise, a Weak Merge event does
occur (lines 9 and 10). For communities with Merge
events, if the union set of these communities does not
belong to the community at time t, a Weak Expand event
occurs (lines 7 and 8).

2) Finally, it outputs identified events (line 11).

F. Algorithm Complexity Analysis

For a network G(V , E) with n nodes and m edges,
in Algorithms 1–5, each algorithm visits all nodes in the
network at adjacent timestamps, after which they determine
whether the number of nodes changes, in order to deter-
mine which event happens, similar to visiting the Cartesian
product of nodes at adjacent timestamps. Therefore, the time
complexity of Algorithms 1–5 is O(n2).

V. EXPERIMENTS

A. Experimental Setup

In order to verify the accuracy and efficiency of the
proposed community evolution analysis framework, we con-
duct experiments using real data as well as large-scale syn-
thetic network data sets, including: 1) two types of synthetic
dynamic networks generated by the data generator [31] and
2) real dynamic networks, including DBLP data set [32] and
Facebook data set from New Orleans in 2008 [33]. The details
of these data are shown in Table III.

The first type of synthetic data is generated by the dynamic
network D3, with parameters listed in Table III(a), without
specifying the number of evolutionary events. The second type
of synthetic data is generated by the dynamic networks D1 and
D2 in Table III(a), in order to estimate the correctness of the
WECEM framework, where the D1 dataset generates 50 Form
and Disappear events, 10 Merge and Split events, 50 Shrink
and Expand events, while the D2 dataset is specified to have
200 Form and Disappear events, 50 Split and Merge events,
and 200 Shrink and Expand events.

As we can see from Table III(a), for the synthetic dynamic
network datasets D1, D2, and D3, the dynamic community
evolution events were analyzed across 5 time steps, and the
time steps is determined based on the following rules: The
networks began at t = 1 with around 400 embedded commu-
nities, which were constrained to have sizes between [20, 60].
In these three synthetic datasets, twenty percent of node mem-
berships were randomly permuted at each step to simulate
users’ movement across communities over time. Then, events
were added by the generator. As for the real DBLP dataset
in Table III(b), the number of time steps for community evo-
lution analysis is 5 (years). Similarly, for the real Facebook
dataset in Table III(c), the number of time steps for community
evolution analysis is 12 (months).
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TABLE III
DESCRIPTION OF EXPERIMENTAL DATA SETS. (a) SYNTHETIC DYNAMIC

NETWORK DATA. (b) DBLP NETWORK DATA.
(c) FACEBOOK NETWORK DATA

(a)

(b)

(c)

The proposed WECEM framework is implemented by Java
programming language, and we compare it with classic Asur
framework [4] and Takaffoli framework [2], where the param-
eter k of the Asur and the Takaffoli framework is set to
0.5 based on experimental studies. The hardware environment
includes the Intel Corei7-4710HQ processor, and 8G memory.
Each framework executes 3 times on each data set, and we
take the average value to show their performance.

Definition 17 [Event Mining Accuracy (EMA)]: EMA rep-
resents the accuracy of event detection, which equals the
proportion of the number of correctly identified communities
to the actual number of communities with events happening

EMAP =
∑

t∈T

{∣∣∣CP
t

⋂
CP

t
′∣∣∣
}

∑
t∈T max

{∣∣CP
t

∣∣,
∣∣∣CP

t
′∣∣∣
} (16)

where EMAP represents EMA of a particular event P, T rep-
resents the set of timestamps, CP

t represents the community
where P occurs at time t detected by algorithms, CP

t
′

rep-
resents the true community where P happens at time t, and

EMA is used to evaluate the accuracy of each framework for
detecting evolutionary events.

B. Parameter Specification

In order to take into account the quantity and quality of
discovered events, it is necessary to determine the value of
the community existence parameter θ , the community scale
changing parameter γ and the multiple community changing
parameter ξ . The accuracy of WECEM is relevant to these
three parameters, thus choosing appropriate parameter values
can help discover more reliable events. θ and γ are specified
by experiments on the D1 data set. Because the D1 data set
contains only 10 Split and Merge events and the scale of data
is small, the accuracy of event mining cannot be accurately
displayed on D1, ξ is determined by experiments on the D2
data set. The results are shown in Fig. 4, while Fig. 4(a)–(d)
demonstrate the experimental results by changing θ and γ

parameters on the D1 data set, and Fig. 4(e) and (f) show the
results by specifying different ξ values on the D2 data set.

In Fig. 4(a), as θ grows, except for Form and Disappear
events, the number of other events decreases, because Form
and Disappear events require that the community overlapping
degree between communities at adjacent timestamps is less
than θ . When the value of θ is very small, it is difficult to find
Form and Disappear events. However, as the value of θ grows,
the constraint for Form and Disappear events becomes increas-
ingly loose, and it can discover more such events. On the
contrary, with the value of θ growing, the constraint for other
events becomes strict, so the number of discovered events
decreases.

As shown in Fig. 4(b), when θ < 0.4, as the value of θ

grows, EMA of Form and Disappear events grows gradually.
Because as θ grows, the number of Form and Disappear events
changes to the actual situation of these two events. But when
θ > 0.4, as θ increases, redundant events increase gradually,
which leads to the decrease of EMA. According to the exper-
imental results of discovered events on the D1 data set, θ is
specified to 0.4 in the following experiments so as to avoid
the overlapping of strong events and enable WECEM to find
as many events as possible.

As shown in Fig. 4(c), as γ increases, the number of Expand
and the Shrink events grows gradually, because the constraint
range of Expand and Shrink events becomes large with γ

increasing. However, the capability of distinguishing these
events becomes weak, and the discovered events will be over-
lapped by other events, especially for Shrink events. When
γ = 1, the bound constraint is between [0, 1], and the Shrink
event happens in almost all communities.

In Fig. 4(d), as γ grows, EMA of Expand and Shrink
events increases at first and then drops, because when γ is
small, the number of events is small, but, when γ is very
large, there exists several redundant events. In order to iden-
tify more events in an effective fashion, the numbers of Shrink
and Expand events on the D1 data set are increased to 50 and
γ is specified to 0.3.

By Fig. 4(e), the number of Split and Merge events
decreases with ξ , because when ξ is set to be large, the
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(a) (b) (c)

(e) (f) (g)

Fig. 4. Number of discovered events and EMA by the WECEM framework with different θ , γ and ξ values. (a) Number of discovered events as θ changes.
(b) EMA as θ changes. (c) Number of discovered events as γ changes. (d) EMA as γ changes. (e) Number of discovered events as ξ changes. (f) EMA as
ξ changes.

number of communities meeting the constraints of overlapping
degree and membership degree decreases, and the correspond-
ing events will reduce gradually. When 0 < ξ ≤ 0.6, as
ξ grows, the number of communities grows which satisfies
the requirement of membership degree without satisfying the
requirement of community overlapping degree, thus the num-
bers of Weak Split and Weak Merge events grow gradually.
When 0.6 < ξ ≤ 1, these two conditions cannot be met, so the
changing trends of Weak Split and Weak Merge events (Split
and Merge events) are nearly the same.

According to Fig. 4(f), when 0< ξ <0.7, EMA increases
with ξ . When 0.7< ξ <1, EMA degrades with ξ . When ξ

is small, with ξ growing, the number of discovered events is
approximate to the number of actually occurred events. When
ξ is specified to a large value, the number of redundant events
grows, which leads to the decrease of EMA. Based on the
above discussion, in order to accurately identify evolutionary
events, ξ is set to 0.6 in experiments.

C. Quantity Analysis of Detected Events

In this section, we compare the number of correctly detected
events among different community detection frameworks.

1) Quantity Comparison of Detected Events on DBLP:
Table IV shows the number of detected events on the DBLP
data set, and the following observations can be drawn.

1) For each framework, the numbers of Form and
Disappear events are the largest compared with other
events. This is because DBLP is a coauthor network,
with some scholars publishing papers and other scholars
may not publishing papers each year. Consequently, sev-
eral small communities are formed, thus the numbers of

Form and Disappear events are larger than that of other
events.

2) As shown in Table IV(a), although there are many
weak events in the DBLP network, the change of nodes
and edges relevant to weak events is so small, which
does not cause a qualitative change in the community.
Additionally, because the weak events are accompanied
with strong events, even weak events overlap with strong
events, discovering weak events can help accurately
predict the variation tendency of network structures.
However, Asur, Takaffoli, and other event-based frame-
works does not work for identifying weak events, while
they only focus on strong events which are easy to
be found. Actually, the phenomenon of overlapping
events rarely appears, and it is difficult for traditional
event-based frameworks to detect events with a slowly
changing tendency in dynamic networks.

3) By comparing Table IV(a) with Table IV(b), the num-
bers of events detected by WECEM are larger than that
mined by the Asur framework and WECEM outperforms
traditional frameworks by 22.9% in the number of dis-
covered strong events. Because the definition of events
by Asur is strict, which makes the Asur framework dif-
ficult to detect events. Taking the Remain event as an
example, it requires the number of nodes in a commu-
nity should be exactly the same at adjacent timestamps.
Moreover, as for Form events, there should be no similar
nodes in a community at time t and t + 1.

4) By comparing Table IV(a) with Table IV(c), we can
find that the number of events identified by WECEM
is almost the same as Takaffoli, since WECEM uses
multiple parameters to deal with different events. In
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TABLE IV
QUANTITY COMPARISON ON DBLP DATASETS. (a) NUMBER OF EVENTS DETECTED BY WECEM. (b) NUMBER OF EVENTS DETECTED BY ASUR.

(c) NUMBER OF EVENTS DETECTED BY TAKAFFOLI

(a)

(b) (c)

addition, community overlapping degree and member-
ship degree works to accurately detect evolutionary
events. For a small scale of events, Takaffoli can dis-
cover more events than WECEM, because Takaffoli
focuses on the detection of multiple networks before and
after the time slice, the event that meets the condition
is identified, and the corresponding event is considered
to have occurred.

2) Quantity Comparison of Detected Events on D3
Data: Table V shows the number of events detected by each
framework. The most important difference from the D3 data
set to the D1 and D2 data sets lies in we do not need to
manually specify the number of events, which is approximate
to the real-world dynamic network structures.

According to [31], at every moment, nodes are selected
from the D3 synthetic data set to simulate the changes of the
network. This kind of network evolves in a continuous and
stable fashion, which is similar to the real dynamic network.
Consequently, the numbers of events discovered by these three
frameworks over time are relatively stable.

As shown in Table V, the Asur framework cannot handle
large-scale synthetic network data because the node changes
in each time slice of the simulated network are extracted pro-
portionally from the last moment, and many communities have
small changes, which is not sufficient to satisfy the definition
of events in the Asur framework, resulting in zero for each
event in the Asur framework. On the contrary, Tables V(a)
and (c) show that the WECEM framework discovers the sim-
ilar numbers of Remain, Form and Disappear events to the
Takaffoli framework, which verifies the effectiveness of the
WECEM framework. For the Split and Merge events, Takaffoli
discovers more events than WECEM. Because the values of
parameters in WECEM is set to be small, which results in
many redundant events. On the other hand, the Takaffoli
framework needs to compare the number of nodes at each
time slice in event detection.

In Tables IV(a) and V(a), there are a large number of weak
events on each data set. We can conclude that weak events are
very common in complex networks. For two networks evolving

during a short period of time, there are a large number of weak
events because of the slow changes in the number of nodes
and edges. Finally, the frequent occurrences of weak events
result in strong events.

D. Event Detection Quality Analysis

For the D1 and D2 datasets, we generate a fixed num-
ber of events. The EMA measurement is used to verify the
accuracy of event detection by comparing the number of dis-
covered events with the actual number of events on these three
frameworks. It is noteworthy that we cannot manually spec-
ify the number of events in community evolution on DBLP
and Facebook datasets that are from real networks. It is dif-
ficult to accurately estimate the accuracy of event mining, so
we conduct experiments on the D1 and D2 datasets and the
experimental results are shown in Fig. 5.

Fig. 5 shows the accuracy of event detection on the D1 and
D2 datasets by each framework. Given that Asur and Takaffoli
do not define Shrink and Expand events, we only show the
results about Shrink and Expand events from WECEM. The
following conclusions are made by Fig. 5.

1) WECEM is more accurate than Asur and Takaffoli in
discovering Form and Disappear events that occur in
various communities. The reason behind is that although
Asur can guarantee the accuracy of event detection, it
is too strict to define different events and the number of
events discovered by the Asur framework is very small,
so its EMA is very low. On the other hand, the Takaffoli
framework considers the change of the number of nodes
at all timestamps when mining events and the change
of communities in synthetic networks are regular, the
redundant nodes mined by the Takaffoli framework are
higher than that of the WECEM framework.

2) As for the Split and Merger events, the WECEM event
discovery accuracy is lower than that of the Asur frame-
work. This can be explained by the fact that we use
the data generator designed by Greene et al. [31] to
generate dynamic synthetic network datasets in order to
mine Split and Merge events, and this data generator
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TABLE V
QUANTITY COMPARISON OF EVENTS ON D3 DATASETS. (a) NUMBER OF EVENTS DETECTED BY WECEM. (b) NUMBER OF EVENTS DETECTED BY

ASUR. (c) NUMBER OF EVENTS DETECTED BY TAKAFFOLI

(a)

(b) (c)

(a) (b)

Fig. 5. Event detection accuracy comparison on different datasets. (a) EMA on D1 dataset. (b) EMA on D2 dataset.

is developed based on Asur framework. On one hand,
WECEM can identify all of Split and Merge events due
to the relaxed definition of evolutionary events when
compared to the Asur framework. On the other hand,
more redundant events will be found by the WECEM
framework, which leads to the lower accuracy of dis-
covering Merger and Split events compared with the
Asur framework. Although some of the events found by
WECEM are redundant, these communities with these
events actually have changed in the network, which
mainly constitutes weak events. Similarly, the Takaffoli
framework has a lower accuracy and higher redun-
dancy rate than the WECEM framework, although the
Takaffoli framework can identify all Split and Merge
events. The reasons of its higher redundancy are twofold:
a) the synthetic network data agrees with some regu-
larity without considering the distribution of events at
each timestamp and b) the Takaffoli framework uses
the uniform parameter k to control community sim-
ilarity and discover events in the network, whereas
WECEM takes into account three parameters, which
plays important roles in accurately mining evolutionary
events.

3) EMA of WECEM is averagely 2.13% higher than that
of the Asur framework and 12.2% higher than that of
the Takaffoli framework. The accuracy of WECEM is
higher than that of the Asur framework. This is because
WECEM uses multiple parameters to distribute different
kinds of events in order to avoid the overlap of events
as well as reduce the redundancy rate of mining events.

E. Efficiency Analysis of Detecting Events

In this section, we compare the execution time of each
framework on these five datasets, including DBLP, Facebook,
D1, D2, and D3. The experimental results are shown in Fig. 6,
where the x-axis represents the time interval of two adjacent
timestamps. As shown in Fig. 6(e), the y-axis represents the
execution time of each framework.

As demonstrated in Fig. 6, with the number of nodes grow-
ing, the runtime of these three frameworks increases gradually,
and the following conclusions can be made.

1) According to Fig. 6(a), (c), (d), and (e), the Asur frame-
work runs first on the DBLP, D1, D2, and D3 datasets,
followed by the Takaffoli framework, with the WECEM
framework being the lowest one. This can be explained
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(a) (b) (c)

(d) (e)

Fig. 6. Execution time comparison of different frameworks on different datasets. (a) DBLP. (b) Facebook. (c) D1. (d) D2. (e) D3.

by the reason that WECEM needs to simultaneously
identify 11 kinds of events composed of strong events
and weak events, while the Asur framework and the
Takaffoli framework only need to mine five kinds of
elementary events.

2) From Fig. 6(b), the most efficient framework is Asur,
followed by WECEM, and the slowest one is Takaffoli
on the Facebook dataset. Because the Facebook datasets
have a large number of nodes involved over several
timestamps, the Takaffoli framework detects every event
by comparing the number of nodes over all timestamps.
However, WECEM and Asur only need to compare
the number of nodes at adjacent timestamps. So the
time complexity of Takaffoli is higher than WECEM
and Asur. The efficiency of Asur is higher than that
of WECEM, as Asur framework does not need to
detect Shrink and Expand events and it cannot detect
weak events as well. For Facebook datasets, the effi-
ciency of WECEM is 48.83% less than Asur and is
67.73% higher than Takaffoli. In summary, the proposed
WECEM framework can deal with large-scale dynamic
networks over several timestamps, which is more flexible
and generic than the Takaffoli framework.

VI. CONCLUSION

In this article, we have explored the fundamental principle
and working mechanism of the WECEM framework for weak
event mining in the community evolution of dynamic com-
plex networks. WECEM classifies events into strong events
and weak events. Two measurements, community overlap-
ping degree, and community membership degree, are used to
determine the continuity of dynamic communities in complex
networks. To calculate the community overlapping degree and

community membership degree, the WECEM framework first
compares each community at consecutive timestamps, respec-
tively, and then discovers different events based on these two
measurements. The experimental results have indicated that the
WECEM framework is effective at mining events. Particularly,
WECEM can discover weak events which cannot be handled
by other frameworks. In addition, the experimental results
have also shown that the WECEM framework is effective
at detecting strong as well as weak events. As for mining
large-scale dynamic networks, the advantage of WECEM is
apparent, since it can detect small changes in the network.
Given that WECEM needs much time to mine several kinds
of events, its efficiency is less than the traditional frameworks
in some cases. In our future work, we will continue to improve
the accuracy of event mining by reducing redundant events.
Because traditional serial community evolution analysis meth-
ods cannot handle a big network data, and we will parallel the
WECEM framework to mine larger complex networks with a
huge number of nodes and complex relationships.
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